コンクリート橋の維持管理のための 3D モデリングと実計測の活用

長崎大学大学院 学生員 ○河村 太紀 長崎県土木部 田崎 智 (株) PAL 構造 非会員 西行 健 (株)計測リサーチコンサルタント 正会員 木本 啓介 長崎大学工学研究科 正会員 西川貴文・森田千尋・松田浩

1. 序論

近年,高度経済成長期に建設された橋梁高齢化やインフ ラ構造物の老朽化や維持管理不足が全国各地の橋梁で発 生しており,効率的で的確な維持管理が必要とされている. 特に地方公共団体管理の中小橋梁には,設計図書もなく, 架設年すら不明の橋梁も多数存在する.

現在の近接目視による点検では、損傷や腐食の状況はわ かるが、リスクや安全性を評価は簡単ではない.橋梁のリ スクや安全性を評価し、適切に維持管理するためには、図 1に示すように、構造解析モデルを構築し、それにより構 造解析を実施し、その結果を、実構造のたわみや振動計測 と比較し橋梁の構造特性を同定することが必要となる.

本研究では、3D レーザスキャナを用い、3D 構造モデル を作成し、構造解析を実施し、その結果を実計測データと 比較し、簡便な方法で橋梁の安全性やリスクを評価できる 手法を提示するとともに、その有用性について検討する.

2. 橋梁概要

対象橋梁は、道路拡幅工事に伴い撤去される、長崎県諫 早市富川町に架かる2径間単純ポステンT桁橋の蒲生田 橋の1径間である.3D計測の様子を写真1、3D計測によ り得られた蒲生田橋の点群データを図2に示す.

写真1 3D 計測の様子

図2 蒲生田橋点群データ

3. 解析モデル

まず,各主桁1本を梁要素に置換し骨組解析モデルを作成する.それにより,斜角の影響を考慮することができ, 且つねじれモードを正しく再現することが可能になる.こ のモデルをモデルA(図3)とし,両端の支持条件,地覆, アスファルト厚等の影響を考慮して解析を実施した.点検 調査結果,コンクリート主桁にはひひ割れが発生しておら ず,要素は全断面有効の弾性梁要素とした.

図3 解析モデル(モデルA)

さらに、簡易モデルAの解析モデルの精度と信頼性を検 討する目的でソリッドモデルによる解析を実施した.ソリ ッド解析には8節点アイソパラメトリック要素を用いてモ デル化を行った(モデル B).ソリッド解析においては、 モデルAの骨組解析モデルに比べて、解析モデル作成に時 間がかかること、解析時間が長いこと、さらには、メッシ ュ分割サイズに解析結果が左右される.したがって、膨大 な数のコンクリート橋の構造性能を評価するために、でき る限り簡易モデルAでの解析で済ませたいというねらい がある. これを図4に示す.

図4 解析モデル(モデルB)

キーワード 構造同定, 3D 計測, FEM 解析, 固有振動数, たわみ 連絡先 〒852-8521 長崎県長崎市文教町 1-14 長崎大学院工学研究科松田研究室 両モデルのコンクリートのヤング係数は 2.8×10^{3} N/mm², 単位体積重量 24.5 kN/m³, ポアソン比 0.15 とする. なお, モデル A の支持条件を単純支持(ピン支持とローラー支 持)にしたものをモデル A', モデル B を単純支持にした ものをモデル B'とする.

4. 計測及び固有値推定概要

固有振動数及び振動モードの推定については、ワイヤレ ス速度計とレーザドップラ速度計(以下:LDV)で応答速 度を計測し、得られた速度波形に対しFFT解析を行い、卓 越周波数から固有振動数を算出する.なお、計測はサンプ リング周波数 500Hz で橋梁中央付近を強制加振下で行う. たわみの計測については、デジタル画像相関法(DICM)によ り行う.計測方法としてはターゲットを配置し、荷重載荷 前後のターゲットの位置関係からたわみを計測する.これ らの様子を写真2に示す.

写真2 計測の様子 (左:LDV 振動計測 右:たわみ計測)

5. 固有値解析結果及び計測値との比較

計測により得られた解析及び計測により得られた各モードの固有振動数を表 1,各振動モード図を図 5(a)(b)(c)(d) に示す.

表1 解析結果及び計測値

図5(a) モデルA(鉛直1次モード)

図5(b) モデルB(鉛直1次モード)

図5(c) モデルA(ねじれ1次モード)

図5(d) モデルB(ねじれ1次モード)

表1のモデルBと計測結果を比較すると、よく一致して いることから、3D レーザスキャナの計測結果を図面の代 用とし、構造同定を行えたといえる.

また、モデルA・Bの支持条件が両端ピン支持で一致したことから、一般的な単純支持条件仮定は実現象と一致せず、水平方向の移動が拘束されていることが分かる.

モデルAでの解析結果より,鉛直振動に加えねじれ振動 でも精度よく再現できているため,モデル作成の手間と実 現象の再現精度を考慮すると,構造同定は妥当だと判断で きる.

また振動計測に関してワイヤレス速度計, LDV 両方で 同様の結果を得ることができた.これより,計測現場の特 性や制約などを考慮し,両者を使い分けることでより効率 的に計測が行えると判断できる.

6. 結論

本検討により、以下のことが明らかとなった.

・3D レーザスキャナにて取得した点群データが図面の代用になり得る.

・骨組解析モデルでも精度よく構造同定を行うことができる.

・ワイヤレス速度計と LDV を使い分けることで効率的に 振動計測が行える.

この結果より, 簡便で効率よく橋梁の安全性やリスクの 評価の可能性が見出せた.

参考文献

橋梁振動実験に基づく斜橋の固有振動数の同定と部材の損傷 が振動特性に及ぼす影響に関する基礎的研究:渡邊学歩,友 廣郁也,後藤悟史,江本久雄,土木学会構造工学論文集 Vol.60A, pp513-521(2014.3)